What makes sulfur unique




















Substitutability The availability of suitable substitutes for a given commodity. Reserve distribution The percentage of the world reserves located in the country with the largest reserves. Political stability of top producer A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators. Political stability of top reserve holder A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.

Supply risk. Relative supply risk 3. Young's modulus A measure of the stiffness of a substance. Shear modulus A measure of how difficult it is to deform a material. Bulk modulus A measure of how difficult it is to compress a substance. Vapour pressure A measure of the propensity of a substance to evaporate. Pressure and temperature data — advanced. Listen to Sulfur Podcast Transcript :.

You're listening to Chemistry in its element brought to you by Chemistry World , the magazine of the Royal Society of Chemistry. Hello, this week stinky sediments, skunks and the smell of hell. Well they all begin with the letter S, and so does this week's element.

Here's Steve Mylon. The smell of the sediment tells a great deal about the underlying chemistry. Thick black anoxic sediments can be accompanied by a putrid smell which is unique to reduced sulfur.

Maybe this is why sulfur has such a bad reputation. My son wouldn't eat eggs for 6 months when he got a smell of his first rotten one. In the bible it seems that whenever something bad happens or is about to happen burning sulfur is in the picture:.

And in Revelation we read that the sinners will find their place in a fiery lake of burning sulfur. The odd thing is that in both cases we shouldn't expect anything smelly to be produced. When sulfur burns in air, it generally forms sulfur dioxide or sulfur trioxide, the latter of which lacks any smell [amended from the podcast audio file, which states that sulfur dioxide does not smell].

These compounds can further oxidize and rain out as sulfuric or sulfurous acid. This is the mechanism for acid rain which has reeked havoc on the forests of the northeastern United States as sulfur rich coals are burned to generate electricity in midwestern states and carried east by prevailing winds where sulfuric acid is rained out causing all sorts of ecological problems.

Additionally, the combination of burning coal and fog creates smog in many industrial cities causing respiratory problems among the locals.

Here too, sulfur dioxide and sulfuric acid are implicated as the culprits. But again, there is no smell associated with this form of sulfur. But reduce sulfur by giving it a couple of electrons, and its smell is unmistakable. The requirement of sulfur reduction to sulfide has clearly been lost in translation. Hell that smells like hydrogen sulfide or any number of organic-sulfur compound will not be a nice place at all.

The organic sulfide compounds known as thiols or mercaptans smell so bad, that they are commonly added to odorless natural gas in very small quantities in order to serve as a 'smell alarm' should there be leak in a natural gas line.

Skunks take advantage of the foul smell of butyl seleno-mercaptan as a means of defending themselves against their enemies. And for me, personally, the worst chemistry of all occurs when reduced sulfur imparts a bad skunky taste in bottles of wine or beer. So, where does the "smell of hell" come from in anoxic sediments.

Interestingly, some bacteria have evolved to make use of oxidized sulfur , sulfate, as an electron acceptor during respiration. In a similar manner to the way humans reduce elemental oxygen to water, these bacteria reduce sulfate to hydrogen sulfide- They clearly don't mind the smell. Smell is not the only interesting chemistry that accompanies reduced sulfur.

The deep black associated with anoxic sediments results from the low solubility of most metal sulfides. Sulfate reduction to sulfide generally accompanies the precipitation of pyrite iron sulfide , cinnabar mercury sulfide , galena lead sulfide and many more minerals.

These metal sulfides have become an important industrial source for many of these important metals. Industry is one place you are almost certain to find sulfur or more importantly sulfuric acid which is used in processes ranging from fertilizer production to oil refining. In fact sulfuric acid ranks as the most highly produced chemical in the industrialized world. Imagine that, the element with such a hellish reputation has become one of the most important.

And some even suggest that sulfur could save the planet. The biogenic compound dimethylsulfide DMS is produced from the cleavage of dimethylsufonoprioponate, an osmotic regulatory compound produced by plankton in the ocean. DMS is oxidized to SO2 and finally to sulfuric acid particles which can act as cloud condensation nuclei forming clouds which have a net cooling effect to the planet. Imagine warmer temperatures followed by greater biological activity resulting in more DMS to the atmosphere.

The resulting cloud formation might work to cool a warming planet. It's almost like the plankton are opening an umbrella made up-in part- of sulfur. From a symbol of damnation to savior Steve Mylon sniffing out the stinky story of Sulfur. Thankfully next week's element is a lot less odiforous.

The story of its discovery started when Rayleigh found that the nitrogen extracted from the air had a higher density than that made by decomposing ammonia. The difference was small but real.

Ramsay wrote to Rayleigh suggesting that he should look for a heavier gas in the nitrogen got from air, while Rayleigh should look for a lighter gas in that from ammonia. Ramsay removed all the nitrogen from his sample by repeatedly passing it over heated magnesium. He was left with one percent which would not react and found it was denser than nitrogen. Its atomic spectrum showed new red and green lines, confirming it a new element. And that new element was Argon nicknamed the lazy element because originally scientists thought that it wouldn't react with anything.

Now we know that's not true and John Emsley will be here to unlock Argon secrets on next week's Chemistry in its Element, I hope you can join us. I'm Chris Smith, thank you for listening and goodbye.

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists. There's more information and other episodes of Chemistry in its element on our website at chemistryworld. Click here to view videos about Sulfur. View videos about. Help Text. Learn Chemistry : Your single route to hundreds of free-to-access chemistry teaching resources.

We hope that you enjoy your visit to this Site. We welcome your feedback. Data W. Haynes, ed. Version 1. Coursey, D. Schwab, J. Tsai, and R. Dragoset, Atomic Weights and Isotopic Compositions version 4. Periodic Table of Videos , accessed December Podcasts Produced by The Naked Scientists. Download our free Periodic Table app for mobile phones and tablets.

Explore all elements. D Dysprosium Dubnium Darmstadtium. E Europium Erbium Einsteinium. F Fluorine Francium Fermium Flerovium. G Gallium Germanium Gadolinium Gold. I Iron Indium Iodine Iridium. K Krypton. Measure content performance. Develop and improve products. List of Partners vendors. Share Flipboard Email. Anne Marie Helmenstine, Ph. Chemistry Expert.

Helmenstine holds a Ph. She has taught science courses at the high school, college, and graduate levels. Facebook Facebook Twitter Twitter. Updated October 02, Featured Video. Sulfur had many uses in ancient times and was mentioned in early texts in ancient India, ancient Greece, China and Egypt. In the Bible, sulfur is called brimstone. When burned, sulfur produces a deep-blue color. Sulfur became acknowledged as a chemical element rather than a compound in when Antoine Lavoisier included it in his famous list of the elements.

Lavoisier, a brilliant chemist and scientist, also recognized and named the elements oxygen and hydrogen A nonmetal, sulfur is the 10 th -most-common element in the universe. Sulfur is also used to refine oil and in processing ores. Pure sulfur has no odor; the rotten-egg odor that it is known for only occurs when combined with other elements i. Sulfur compounds called mercaptans, for example, give skunks their offensive odor.

Rotten eggs and stink bombs get their distinguishing aroma from hydrogen sulfide H 2 S. Its recipe was found in a Chinese text dated from the year AD. Gunpowder consists of sulfur, charcoal and potassium nitrate saltpeter, KNO 3. The sulfur and charcoal provide the fuel, and the saltpeter is an oxidizer.

Other common uses for sulfur include: household matches, fireworks, fungicides, insecticides, fumigants and in the vulcanization process of rubber. Sulfur is also important for the manufacture of phosphate fertilizers and in the treatment of certain skin diseases. Since sulfur generates poisonous sulfur-dioxide gas when ignited, burning sulfur has been used for centuries as a fumigant.



0コメント

  • 1000 / 1000